Search results for "MESH: Repressor Proteins"

showing 2 items of 2 documents

Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature

2016

Item does not contain fulltext Verheij syndrome, also called 8q24.3 microdeletion syndrome, is a rare condition characterized by ante- and postnatal growth retardation, microcephaly, vertebral anomalies, joint laxity/dislocation, developmental delay (DD), cardiac and renal defects and dysmorphic features. Recently, PUF60 (Poly-U Binding Splicing Factor 60 kDa), which encodes a component of the spliceosome, has been discussed as the best candidate gene for the Verheij syndrome phenotype, regarding the cardiac and short stature phenotype. To date, only one patient has been reported with a de novo variant in PUF60 that probably affects function (c.505C>T leading to p.(His169Tyr)) associated wi…

0301 basic medicineMaleMESH: Heart Defects Congenital / physiopathologyMicrocephalyPathologyMESH: Heart Defects Congenital / geneticsMESH: Exome / genetics030105 genetics & heredityMESH: RNA Splicing / geneticsMicrophthalmia[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseasesMESH: ChildExomeMESH: RNA Splicing Factors / geneticsChildFrameshift MutationMESH: High-Throughput Nucleotide SequencingGenetics (clinical)Exome sequencingColobomaMESH: Frameshift MutationHigh-Throughput Nucleotide SequencingMicrodeletion syndromeMicrocephaly Verheij syndrome PUF60ChemistryPhenotypeChild PreschoolDISEASESMicrocephalyMedical geneticsFemaleRNA Splicing Factorsmedicine.symptomChromosome DeletionChromosomes Human Pair 8MESH: Dwarfism / genetics*Heart Defects Congenitalmedicine.medical_specialtyGENESAdolescentRNA SplicingMESH: Chromosome DeletionDwarfismBiologyMESH: PhenotypeShort statureArticlePUF6003 medical and health sciencesInternal medicineIntellectual Disability[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineHumansCraniofacialBiologyMESH: AdolescentNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]MESH: HumansMESH: Child Preschoolmedicine.diseaseMESH: Repressor Proteins / geneticsMESH: MaleRepressor Proteins030104 developmental biologyEndocrinologyMESH: Chromosomes Human Pair 8 / geneticsMESH: Dwarfism / physiopathologyMESH: Intellectual Disability / physiopathologyHuman medicineMESH: Intellectual Disability / geneticsVerheij syndromeMESH: Female[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity

2009

T helper cells secreting interleukin (IL)-17 (Th17 cells) play a crucial role in autoimmune diseases like multiple sclerosis (MS). Th17 differentiation, which is induced by a combination of transforming growth factor (TGF)-beta/IL-6 or IL-21, requires expression of the transcription factor retinoic acid receptor-related orphan receptor gamma t (ROR gamma t). We identify the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) as a key negative regulator of human and mouse Th17 differentiation. PPAR gamma activation in CD4(+) T cells selectively suppressed Th17 differentiation, but not differentiation into Th1, Th2, or regulatory T cells. Control of Th17 differentia…

MESH: Nuclear Receptor Subfamily 1 Group F Member 3Helper-InducerReceptors Retinoic AcidT-LymphocytesMESH: Interleukin-17Cellular differentiationRetinoic AcidPeroxisome proliferator-activated receptorNeurodegenerativeInbred C57BLMedical and Health SciencesMiceInterleukin 210302 clinical medicineGroup FRAR-related orphan receptor gammaMESH: Nuclear Receptor Co-Repressor 2Receptors2.1 Biological and endogenous factorsThyroid HormoneImmunology and AllergyMESH: AnimalsAetiologyEncephalomyelitisPromoter Regions Geneticchemistry.chemical_classificationOrphan receptor0303 health sciencesReceptors Thyroid HormoneInterleukin-17Cell DifferentiationT-Lymphocytes Helper-InducerNuclear Receptor Subfamily 1 Group F Member 33. Good healthCell biologyDNA-Binding Proteinsmedicine.anatomical_structureMESH: Repressor Proteins[SDV.IMM]Life Sciences [q-bio]/ImmunologyInterleukin 17MESH: Cell Differentiationmedicine.medical_specialtyEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisNuclear Receptor Subfamily 1Member 31.1 Normal biological development and functioningT cellImmunologyBiologyAutoimmune DiseasePromoter RegionsExperimental03 medical and health sciencesGeneticUnderpinning researchMESH: Mice Inbred C57BLInternal medicineMESH: Promoter Regions GeneticGeneticsmedicineAnimalsHumansNuclear Receptor Co-Repressor 2MESH: Receptors Thyroid HormoneMESH: T-Lymphocytes Helper-InducerMESH: Encephalomyelitis Autoimmune ExperimentalMESH: Mice030304 developmental biologyMESH: Receptors Retinoic AcidMESH: HumansInflammatory and immune systemNeurosciencesBrief Definitive ReportCorrectionMESH: Multiple SclerosisBrain DisordersMice Inbred C57BLPPAR gammaRepressor ProteinsEndocrinologyMESH: PPAR gammaNuclear receptorchemistryMESH: DNA-Binding Proteins030217 neurology & neurosurgeryAutoimmuneJournal of Experimental Medicine
researchProduct